Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | \(g_{10}+g_{9}+5/3g_{1}\) | \(g_{4}+g_{3}\) | \(g_{24}\) | \(g_{22}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(10\omega_{1}\) | \(6\omega_{1}+4\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | \(\displaystyle V_{6\omega_{1}+4\omega_{2}} \) → (6, 4) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(6\omega_{1}+4\omega_{2}\) \(4\omega_{1}+4\omega_{2}\) \(6\omega_{1}+2\omega_{2}\) \(2\omega_{1}+4\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(6\omega_{1}\) \(4\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(6\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+4\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(6\omega_{1}-4\omega_{2}\) \(-4\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(4\omega_{1}-4\omega_{2}\) \(-6\omega_{1}+4\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-6\omega_{1}+2\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{1}\) \(-4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-4\omega_{2}\) \(-6\omega_{1}-2\omega_{2}\) \(-4\omega_{1}-4\omega_{2}\) \(-6\omega_{1}-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(6\omega_{1}+4\omega_{2}\) \(4\omega_{1}+4\omega_{2}\) \(6\omega_{1}+2\omega_{2}\) \(2\omega_{1}+4\omega_{2}\) \(4\omega_{1}+2\omega_{2}\) \(6\omega_{1}\) \(4\omega_{2}\) \(2\omega_{1}+2\omega_{2}\) \(4\omega_{1}\) \(6\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+4\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(4\omega_{1}-2\omega_{2}\) \(6\omega_{1}-4\omega_{2}\) \(-4\omega_{1}+4\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(4\omega_{1}-4\omega_{2}\) \(-6\omega_{1}+4\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-6\omega_{1}+2\omega_{2}\) \(-4\omega_{1}\) \(-2\omega_{1}-2\omega_{2}\) \(-4\omega_{2}\) \(-6\omega_{1}\) \(-4\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-4\omega_{2}\) \(-6\omega_{1}-2\omega_{2}\) \(-4\omega_{1}-4\omega_{2}\) \(-6\omega_{1}-4\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+4\omega_{2}}\oplus M_{4\omega_{1}+4\omega_{2}}\oplus M_{6\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}+4\omega_{2}} \oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}}\oplus M_{6\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{6\omega_{1}-4\omega_{2}} \oplus M_{-4\omega_{1}+4\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}+4\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}+2\omega_{2}}\oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{1}} \oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}-4\omega_{2}}\oplus M_{-6\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}-4\omega_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}+4\omega_{2}}\oplus M_{4\omega_{1}+4\omega_{2}}\oplus M_{6\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}+4\omega_{2}} \oplus M_{4\omega_{1}+2\omega_{2}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{2}}\oplus M_{2\omega_{1}+2\omega_{2}}\oplus M_{4\omega_{1}}\oplus M_{6\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}+4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{4\omega_{1}-2\omega_{2}}\oplus M_{6\omega_{1}-4\omega_{2}} \oplus M_{-4\omega_{1}+4\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}+4\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}+2\omega_{2}}\oplus M_{-4\omega_{1}}\oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{2}}\oplus M_{-6\omega_{1}} \oplus M_{-4\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}-4\omega_{2}}\oplus M_{-6\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}-4\omega_{2}} \oplus M_{-6\omega_{1}-4\omega_{2}}\) |